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Abstract. A narrow band level-set method to calculate the physical lighting time in three 
dimensions has been implemented with arbitrary hexahedral element systems.  
 
This method does not involve finite difference calculation of spatial derivatives.  Mesh regularity, 
and the local topologic equivalence to a regular mesh are not required.  The lighting surface is 
represented by a collection of curved facets contained in partially burnt cells. Level-set functions 
are calculated by direct measurement of distance to the lighting surface, and are carried only for 
nodes of a set of elements in a narrow band that covers the lighting surface. In the case of a 
concave boundary, the nodal distances are calculated with geodesics. A polynomial fitting of 
nodal level-set values across elements provides third-order spatial accuracy where the surface is 
sufficiently smooth. The curvature of the lighting surface is explicitly calculated. The DSD level-
set equation is integrated directly in the normal direction.  
 
The new algorithm is self-initialized and allows easy boundary treatment with body fitting 
meshes. It can also be used as a fast, accurate solver for general surface propagation problems. 

 
 

INTRODUCTION 
Existing level-set lighting time algorithms for 
detonation propagation [1] [2] usually require mesh 
regularity, external initialization, and integration 
on all data points at every time step.  These 
constraints make these algorithms inefficient 
with nontrivial boundary treatment, and of lower 
accuracy. The method presented in this paper is 
efficient, self-starting, of higher accuracy, and 
easily capable of treating general boundaries. 
 

NARROWBAND ALGORITHM 
The new method integrates the DSD level-set 
equation only for data points in a narrowband at 
a time step. For data points out of the narrow 
band, only the signs of their level-set functions 
are required (i.e. a point is burnt or not). The cost 
of numerical integration is one dimension lower 
than a full method. A narrowband method in 
two-dimensions can be easily implemented [3] [4]. 
In comparison, a three-dimensional narrowband 
level-set method seems to require a significantly 
simplified approach because of the nontrivial 
connectivity of surfaces. The work described in 
this paper is the first complete description of a 
simple three-dimensional narrowband level-set 
method and its numerical implementation. 

 
 

BODY-FITTING MESH 
There is no requirement on mesh regularity with 
the new method.  Without loss of generality, a 
finite element system is assumed to represent the 
numerical problem. The external boundaries and 
the material interfaces are assumed represented 
with cell faces. This is not required for the new 
method to work but by taking advantage of 
body-fitting meshes, the boundary treatment 
becomes trivial. 
 

ELEMENTARY APPROACH 
The new method is essentially an elementary 
approach based on straightforward distance 
calculations and least squares fitting. An outline 
of the procedures is as follows 
 
1) Determine for each partially burnt cell a 
‘facet’ using nodal level-set values, thereby 
constructing the lighting surface. 
 
2) Calculate the signed normal distances to the 
surface for the nodes in a narrowband. 
 
3) Integrate the DSD level-set equation in the 
normal direction for each narrowband node. 
 



Steps 1), 2), and 3) are repeated until all HE 
regions are burnt. The initial burn surface is 
assumed specified by the signed distances to the 
surface from the nodes of partially burnt cells.   
 

SELF-INITIALIZATION 
To start a full level-set calculation requires 
having the signed minimum distances from the 
entire set of data points to the initial burn 
surface. This is logically contradictory in the 
sense that initialization of such a problem is 
essentially equivalent to solving the entire 
problem. In the case of complex boundaries, 
initialization with signed minimum distances is 
nontrivial. In contrast, the new method only 
requires the calculation of signed minimum 
distances for points in a narrowband around the 
lighting surface at any given time. Since the 
narrowband data is sufficient to derive the 
solution, the new method is self-initialized, once 
the initial lighting surface is specified. 
 

SURFACE REPRESENTATION (FRONT 
CAPTURING TECHNIQUE) 

With the new method, the burn surfaces are 
represented with a collection of ‘facets’, which 
are contained in partially burnt cells. A facet is 
the portion of lighting surface cut off by a 
partially lighted cell. This concept can efficiently 
be used for general front capturing problems. 
Complexity of surface connectivity in three 
dimensions can then be handled with ease. A 
node that is owned by a partially burnt cell is 
considered as a surface node. 
 

LEVEL OF NEIGHBORS 
Level of neighbors is a powerful way to loop 
over a set of items that has connectivity of 
neighbor relations. It is an efficient approach for 
managing the facets on the lighting surface, as 
demonstrated in Figure 1.  
 
 
 
 
 
 
 
 
  

THE NARROWBAND 
 
 
 
Figure 1. The level of neighbors. 
 

NARROWBAND 
The narrowband is defined as the set of all the 
surface nodes (which define all the partially 
lighted cells) and the nodes of the first level of 
unburned neighbor cells of partially burnt cells. 
Among these nodes, the surface nodes are used 
to determine the burn surface at the current time 
with their level-set values. The rest will have 
their level-set values calculated at the current 
time step, and are going to define the burn 
surface at later time steps as they have become 
new surface nodes. Clearly, a thinner 
narrowband provides more efficiency. The 
definition of narrowband here makes it the 
thinnest possible thus the method is optimized. 
 

CHARACTERISTIC LENGTH 
Any node in the narrowband cannot possibly 
have a distance to the region of partially burnt 
cells greater than the maximum cell dimension 
(the diameter of a smallest sphere that may 
contain any cell). The maximum cell dimension 
is the characteristic length with this method. 

 
FACET 

The vertices of a facet are first determined with a 
linear interpolation of nodal level-set values on 
the edges of a given partially burnt cell. Such an 
approximation can exactly propagate a planar 
wave. These vertices are not necessarily on a 
plane. We fit the facet with a plane to define a 
local Cartesian coordinate for an initial nodal 
distance calculation. This facet-coordinate has its 
origin at the vertical projection of a node along 
an axis that coincides with the facet normal. 

 
NODAL DISTANCE 

The nodal distance is defined as the shortest path 
from a node to a facet. The distance from a given 
narrow band node to the surface is the minimum 
among the distances measured from the node to 
all facets. The facet corresponding to the shortest 
path will be used to refine the initial nodal 
distance calculation in its facet-coordinate.  
 

REGION OF INFLUENCE 
The region that contains all points with a 
distance less or equal to the characteristic length 
(the maximum cell dimension) to a given cell is 
defined as the “region of influence” of this cell. 
For a given facet, we only need to calculate for 
the nodes inside the region of influence and 
inside the narrowband. Since the information for 
these nodes is sufficient to propagate the surface, 
all of the other nodes can be eliminated from the 
calculations of the nodal distance to this facet. 
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POLYNOMIAL SURFACE FITTING 
To more accurately calculate the nodal distance, 
on the smooth portion of the burn surface, one 
can fit the surface with a quadratic polynomial of 
two variables in the facet-coordinate when 
curvature is small, using known surface nodal 
level-set values. This gives the third order of 
accuracy required for the calculation of the 
curvature. 
 
LEAST SQUARES FITTING AND FINITE 

DIFFERENCE METHODS 
The polynomial fitting is done by selecting a set 
of surface nodes in the region of influence of a 
facet and by fitting their level-set values with a 
least squares method. It is worth noting that 
general finite difference methods are strictly 
equivalent to special cases of the least squares 
method as used here[5]. Compared to finite 
difference methods, the new algorithm is much 
more flexible. 
 

CURVATURE 
The integration of the DSD level-set equation 
requires an explicit curvature calculation. This 
calculation is tedious, even on regular meshes 
with finite difference methods. A second order 
method does not provide the required Taylor 
expansion terms to obtain curvature. Thus a 
second order method that claims to have 
curvature effect is not self-consistent. The third 
order of accuracy of the new method is necessary 
and sufficient for the curvature term to be 
included in the calculation. The calculation of 
curvature is trivial with the quadratic surface 
fitting polynomial. 
 

INTEGRATING ON THE NORMAL 
The DSD level-set equation is expressed as 

,0||)( =∇+
∂

∂
ϕκ

ϕ
nD

t
 

for a quasi-steady detonation, here ϕ  is the 
level-set function, Dn is the normal detonation 
speed and κ  is the curvature. With a finite 
difference method, the curvature and the norm of 
gradient cannot be calculated in simple ways. 
However, on the surface normal, the DSD level-
set equation reduces to 

.0)( =+ κ
ϕ

nD
dt

d  

This is much easier to solve using the new 
method since the surface normal vector and 
curvature of the burn surface are naturally 
obtained. The integration of the DSD level-set 
equation can be done trivially in the normal 
direction. If the detonation velocity is a constant, 

one simply has φ(t + dt) = φ(t) – Dn(dt), which is 
the same as a simple Huygens construction. 
 

TIME STEP 
The time step is determined by the minimum 
time it takes for the current surface to reach a 
non-surface node in the narrowband. This means 
the lighting surface at the next time step is 
completely determined by information in the 
current narrowband. A factor less than the unity 
can be used to further limit the time step. 
 

ASPECT RATIO 
Naturally, the new algorithm can be performed 
on a regular mesh. It is most effective when the 
cells are cubic. 
 
For non-cubic cells, the time step of this method 
may be reduced when the detonation wave is 
traveling parallel to the short cell dimension. In 
addition, a curved burn front can light the center 
of a given cell without any of its nodes being lit. 
This situation may cause a few facets to be 
missing from the lighting surface. Although 
polynomial fitting of the surface tends to have 
the missing portion reconstructed, particularly 
thin cells should be avoided if possible. 
 

MULTIPLE DETONATION FRONTS 
Lighting surfaces are considered as collections of 
facets. On the facet level, the case of multiple 
lighting surfaces and the case of single lighting 
surface are not treated differently with the new 
method. 
 
Let us consider the case of interactions between 
multiple lighting fronts in some detail.  In theory, 
it is possible for a partially burnt cell to contain 
several pieces of lighting surfaces. It looks like a 
complicated situation. In practice, the solution is 
simple with the narrowband approach. We argue 
that a) a cell in which such a complex situation 
occurs is not going to be used to generate a facet 
for determining nodal distances of other 
narrowband nodes, and b) the nodal distances in 
this cell are determined in some previous time 
steps. The accuracy of the new method is 
therefore not affected by multiple front 
interactions. 
 

MATERIAL INTERFACES 
A detonation front is assumed to intersect 
material interfaces with determined angles. With 
the assumption of body-fitting mesh, a facet in a 
boundary cell can be determined with the angle 



between the facet and the cell walls. This makes 
the boundary condition trivial to apply. 
 
If the interface is between two HE materials of 
different detonation velocities, the law of 
refraction is taken into account in determining 
the nodal distance. 
 

GEODESICS 
Since a given facet needs only to be considered 
within its region of influence, the new method 
can treat complex boundary geometry in an easy 
fashion.  When the regions of HE material have 
concave boundary portions, the path of minimum 
lighting time may not be determined by a straight 
line. To compute the shortest path between two 
points, one does a geodesic calculation on the 
plane that contains the principal surface normal 
and the points where the boundary is smooth. It 
can be easily shown that such an approximation 
is 3rd order accurate. If sharp concave edges are 
present in the region of influence, one may use a 
plumb line to determine the nodal distance. 
 

LIGHTING TIME ON CELL CENTERS 
Nodal average can give at most 2nd order of 
accuracy for the lighting time at cell centers. If 
computing cost is not a burden, one should treat 
cell centers as nodes and carry level-set values 
on them, as well. An alternative is to use high 
order MLS interpolation of nodal values. 
 

NUMERICAL EXPERIMENT 
A cubic of size 40 by 40 by 40 is ignited at 
corner (20, 20, 20) and (-20, -20, -20) at time 
zero. The lighting velocity is set to 1. The initial 
burn surfaces are two 1/8 spheres with a radius 
of 10 thus about 1.64% of the total volume is 
burnt when the calculation starts. 4 different cell 
sizes are tested. The non-dimensional nodal 
errors of lighting time compared to theoretical 
solution are the follows (the amounts inside 
parentheses are for narrowband nodal distances 
measured at the first time step). 
 

CELL SIZE

L2 ERROR

MAX ERROR

TIME STEPS

.002158

.009588

9

.000118

.000410

18

.000028

(.000053)

35

.000198

.012225

64

(.002078)

(.000385)(.009588)

(.000008)

.000088

(.000175)

(.002008)

4 x 4 x 4 2 x 2 x 2 1 x 1 x 1 2 x 2 x 1/2

(.000065)

 
 
Figure 2. The nonlinear convergence. 

It is easy to see the high accuracy, and the 
nonlinear convergence as the cell size decreases. 
The case of big aspect ratio introduces a 
relatively large maximum local error (where 
curvature is big) but the L2 error stays small. 
 

CONCLUSIONS 
The narrowband nature of the new three-
dimensional lighting algorithm makes it a fast 
one. The concept of region of influence has 
simplified the full problem to a collection of 
simple geometry problems. Direct distance 
calculations and least squares fitting are basically 
all that are needed for the method to work.  The 
high order of accuracy and the low order of 
computing cost by the new method can probably 
make it a preferred method to solve general 
surface propagation problems. 
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